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Motivation and research goal
Introduction
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Many asteroids between 100 m and 100 km in size 
are likely to be gravitational aggregates “rubble pile” 
[Richardson et al. 2002]

Research goal:
Study of rubble-pile asteroids as gravitational aggregates through numerical simulations (granular dynamics)

Credits: JAXA/ 
Hayabusa 2/ 
Minerva-II1-B

Credits: JAXA/Hayabusa Credits: NASA/NEAR



Implementation and methods



Software architecture
Implementation and methods
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Numerical Integration

Contact dynamics

Gravitational dynamics

Rigid-body dynamics



Gravitational dynamics
Implementation and methods
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§ Direct N-to-N integration

§ Barnes-Hut octree 
(CUDA/GPU parallel)

Numerical Integration

Contact dynamics

Gravitational dynamics

Rigid-body dynamics



Gravitational dynamics: direct N-to-N integration
Implementation and methods
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N equations of motion

Features of the dynamical system
§ No analytical solution for the gravitational 

motion of N bodies
§ Highly non-linear (chaotic) behavior
§ Strong dependency on initial conditions

§ Slow dynamics: characteristic time 𝑇~ $
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Features of the numerical problem
§ Initial value problem
§ Integration time step can be big             
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(𝑑𝑡~10( 𝑠 for typical asteroids densities)



Gravitational dynamics: Barnes-Hut octree (CUDA/GPU parallel)
Implementation and methods
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Kernel 1
Compute root 

(bounding box)

Kernel 2
Build octree  

v

Kernel 3
Store body 
information

Kernel 4
Sort bodies 
by distance

Kernel 5
Evaluate 

forces

§ Nodes correspond to cubes in the physical space
§ Homogenous Spatial Recursive sub-division (until each extremal node has 1 or 0 particles)

Based on the work by M.
Burtscher and K. Pingali,
GPU Computing Gems,
Chapter 6: An efficient
CUDA implementation of
the Tree-based Barnes
Hut N-body Algorithm.
Elsevier Inc, 2011.



Gravitational dynamics: Barnes-Hut octree (CUDA/GPU parallel)
Implementation and methods
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Under certain conditions, the force acting on a body, generated by a cluster of bodies can be
approximated è treat cluster as a single body

For each Body-Node pair (𝑩,𝑵):

𝑹': position of barycenter of node N of the octree.
𝑹2: position of body B.

After choosing the accuracy (θ34456347) the condition is:

§ θ34456347 = 0 is the limiting case of considering all interactions between bodies
§ Typical value: θ34456347 = 0.25 (the body-to-cluster distance is at least 4 times the radius of the cluster)

θ =
𝑅𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑁
𝑹' − 𝑹2

θ < θ34456347



Gravitational dynamics: Barnes-Hut octree (CUDA/GPU parallel)
Implementation and methods
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For each body B, the tree is traversed from the root downwards.

Every time a node N is encountered: § If N is a leaf:
body-to-body interaction

§ If N is internal and 𝜽 < 𝜽𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚:
Traversal interrupted and body-to-cluster interaction

§ If N is internal and 𝜽 ≥ 𝜽𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚:
Traversal continues



Gravitational dynamics: performance
Implementation and methods
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CPU: Intel Core i7 6500U 3.1GHz
GPU: Nvidia GeForce 940M

N log(N)

Computational time Accuracy (depends on 𝜽𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚)



Gravitational dynamics: performance
Implementation and methods
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CPU: Intel Core i7 6500U 3.1GHz
GPU: Nvidia GeForce 940M

N log(N)

Computational time

N<1000 : direct N2
N>1000 : BH-GPU

Accuracy (depends on 𝜽𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚)



Rigid-body dynamics
Implementation and methods
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§ Rotational degrees of freedom

§ Tensor of inertia

§ Arbitrary shape

Numerical Integration

Contact dynamics

Gravitational dynamics

Rigid-body dynamics



Rigid-body dynamics
Implementation and methods
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N bodies, each with

§ position 𝒓!
§ rotation quaternion 𝝆!
§ velocity �̇�!
§ angular velocity 𝝎!

§ mass 𝑚!

§ tensor of inertia 𝐈!

§ collision surface Ω!
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Generalized coordinates
𝒒 = 𝒓!0 , 𝝆!0

0
∈ ℝ='

𝒗 = �̇�0! , 𝝎!
0 0 ∈ ℝ>'

𝐌 = [𝑚!] ∈ ℝ>'×>'
𝐉 = [𝐈!] ∈ ℝ>'×>' Shape:

• Triangulated mesh
• Convex hull
• Common geometry 

(sphere, box, cone,…)



Contact dynamics
Implementation and methods
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§ NSC: non-smooth contact 
(hard-body, constraint-based)

§ SMC: smooth contact DEM 
(soft-body, penalty-based)

§ Hybrid: constraint-based with 
compliance and damping

Numerical Integration

Contact dynamics

Gravitational dynamics

Rigid-body dynamics



Contact dynamics: non-smooth dynamics (NSC)
Implementation and methods
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§ Equations of motion are formulated as Differential Variational Inequalities (DVI)
§ Hard-body model
§ Complementarity-based
§ Impulse-momentum formulation
§ Suitable for problems with discontinuities (rigid contacts)

Parameters of the model:
• Friction (static, dynamic, spinning)
• Cohesion (value and constitutive model)
• Restitution coefficient

Credits: Tasora et al 2013

V
𝛾
𝒗𝒏A𝟏 = 𝑓 𝒒, 𝒗, 𝑡, 𝛾
𝒒𝒏A𝟏 = 𝑔 𝒒, 𝒗

(contact) as solution of CCP



Contact dynamics: smooth dynamics (SMC)
Implementation and methods

01 Nov 2018 © 2018 California Institute of Technology. Government sponsorship acknowledged. 17

§ Equations of motion are formulated as Differential Algebraic equations (DAE)
§ Soft-body model (DEM)
§ Penalty-based
§ Force-acceleration formulation
§ Suitable for problems with no discontinuities (no rigid contacts)

Y�̇� = 𝑓 𝒙, 𝑡
𝒈 𝒙, 𝑡 = 0

ODE + AE (kinematic constraint)

Parameters of the model:
• Friction (static, dynamic, spinning)
• Cohesion (value and constitutive model)
• {Young modulus, Poisson ratio, restitution coefficient} 

or {stiffness and damping (normal and tangential)}  
and constitutive model (Hooke, Hertz)

In this case stiffness and damping are estimated 
based on constitutive law of material

Credits: Tasora et al 2013



Contact dynamics: hybrid model
Implementation and methods
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§ Equations of motion are formulated as Differential Variational Inequalities (DVI)
§ Soft-body model (compliance and damping)
§ Complementarity-based
§ Impulse-momentum formulation
§ Suitable for problems with discontinuities 

Parameters of the model:
• Friction (static, dynamic, spinning)
• Cohesion (value and constitutive model)
• Restitution coefficient
• Stiffness and damping (normal, tangential, rolling, spinning), 

rolling friction and constitutive model

Credits: Tasora et al 2013

V
𝛾
𝒗𝒏A𝟏 = 𝑓 𝒒, 𝒗, 𝑡, 𝛾
𝒒𝒏A𝟏 = 𝑔 𝒒, 𝒗

(contact) as solution of CCP



Contact dynamics: summary
Implementation and methods
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NSC SMC Hybrid

Formulation
Equations of motion DVI DAE DVI

Contact model hard soft soft

Performance

Computational time (single time step)

Size of time step

Reproducing non-rigid contact dynamics

Handling complex shapes



Contact dynamics: tuning the parameters
Implementation and methods
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Hybrid model SMC (DEM)



Contact dynamics: tuning the parameters
Implementation and methods
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Angle of repose



Numerical integration
Implementation and methods
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§ Differential Variational 
Inequality (DVI)
(non-smooth dynamics)

§ Differential Algebraic 
Equations (DAE)
(smooth-dynamics)

Time-stepper + Solver
Numerical Integration

Contact dynamics

Gravitational dynamics

Rigid-body dynamics



Numerical integration: available methods
Implementation and methods
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§ Time-steppers:
• Symplectic methods (semi-implicit Euler, leapfrog)
• Runge Kutta methods (RK45, explicit Euler, implicit Euler, trapezoidal, Heun)
• Newmark, Hilber-Hughes-Taylor

§ Solvers:
• Iterative solvers
• Direct solvers

Suited for gravitational problem
Higher order
Suited for FEA problems

Most commonly used: 
good for both DVI and 
DAE problems

Non-smooth dynamics (NSC)
Equations of motion are formulated as Differential Variational Inequalities (DVI)

Smooth dynamics (SMC)
Equations of motion are formulated as a Differential Algebraic Equations (DAE)



Applications



Rubble-pile asteroid: aggregation
Applications
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Rubble-pile asteroid: aggregation
Applications
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§ State of bodies
§ Aggregation time
§ Angular momenta profile

Physical properties (final aggregate) Dynamical state (final aggregate)

§ Bulk density / void fraction
§ Shape: inertia elongation
§ N bodies in aggregate
§ Total mass and size

§ Angular velocity
§ Angular momentum
§ Breakup limits

𝝎3..6
Parameter Symbol
Linear relative velocity of bodies 𝑣C
Angular relative velocity of bodies 𝜔C
Orbital angular momentum of bodies 𝐿C

Aggregation dynamics



Rubble-pile asteroid: aggregation
Applications
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Orbital energy is transmitted to 
spinning rotations of single bodies 
through to collisions

Spinning angular momenta of 
single bodies is transmitted to to 
the aggregate through collisions

𝑣C = 𝜔C = 0; 𝐿C ≠ 0 𝑣C = 𝐿C = 0; 𝜔C ≠ 0

Shape/elongation

𝜆 =
𝐼,3D
𝐼,!E

= [1.15 − 2.70]

Porosity
§ Medium-size aggregates:

[34% − 40%]               
(𝜌F ≅ 1900 -.

,!)
§ Small aggregates:

[14% − 18%]                
(𝜌F ≅ 2500 -.

,!)



Rubble-pile asteroid: spin-up
Applications
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More scenarios
Applications
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§ Tidal disruption of rubble-pile
§ Collision between rubble-piles
§ High-velocity impacts                                 

(co-simulation with SPH)
§ Rubble-pile model as high-fidelity 

gravity source model
§ Planetary ring dynamics

Credits: NASA/JPL/Cassini



Granular soil interaction
Applications
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Granular soil interaction
Applications
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Conclusion
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FINAL HIGHLIGHTS
§ Handles complex-shaped bodies
§ State-of-the-art methods for gravitational dynamics: Barnes-Hut parallel GPU
§ State-of-the-art methods for contact dynamics: both hard- and soft-contact models
§ Great flexibility of models/methods and implementation

FUTURE WORK AND ONGOING COLLABORATIONS
§ Go on with validation/benchmarking and developing effort (with Chrono::Engine team, Univ. Parma)
§ Rubble pile aggregation / reconfiguration (with OCA)
§ Lander/soil interaction and lander/rover mobility
§ Planetary rings dynamics
§ Rubble pile gravity field
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